Developing Pivots Calculator
Result | Classic | Woodie | Camarilla | Demark | Fibonacci |
---|
Classic Pivot
- Pivot Point (P) = (High + Low + Close)/3
- S1 = P * 2 – High
- S2 = P – (High – Low)
- S3 = LOW - (HIGH - P) * 2
- R1 = P * 2 – Low
- R2 = P + (High – Low)
- R3 = HIGH + (P-LOW) * 2
Woodie's Pivot
- R2 = P + (H – L)
- R1 = (2 * P) – L
- P = (HIGH + LOW + (CLOSE * 2)) / 4
- S1 = (2 * P) – HIGH
- S2 = PP – (H – L)
Camarilla Pivot
- R4 = (H – L) * 1.1/2 + C
- R3 = (H – L) * 1.1/4 + C
- R2 = (H – L) * 1.1/6 + C
- R1 = (H – L) * 1.1/12 + C
- S1 = C – (H – L) * 1.1/12
- S2 = C – (H – L) * 1.1/6
- S3 = C – (H – L) * 1.1/4
- S4 = C – (H – L) * 1.1/2
Demark Pivot
- If Close< Open, then X = High + (2*Low) + Close
- If Close> Open, then X = (2*High) + Low + Close
- If Close = Open, then X = High + Low + (2*Close)
- Pivot Point (P) = X/4
- Support 1 (S1) = X/2 – High
- Resistance 1 (R1) = X/2 – Low
Fibonacci Pivot
- Pivot Point (P) = (High + Low + Close)/3
- Support 1 (S1) = P – (0.382 * (High – Low))
- Support 2 (S2) = P – (0.6182 * (High – Low))
- Support 3 (S3) = P – (1 * (High – Low))
- Resistance 1 (R1) = P + (0.382 * (High – Low))
- Resistance 2 (R2) = P + (0.6182 * (High – Low))
- Resistance 3 (R3) = P + (1 * (High – Low))